IPv6隧道
 如上图所示,当两个IPv6网络需要通信时,如果中间需要穿越IPv4网络,而由于IPv4网络中只能识别IPv4包头,并不能为IPv6数据提供正确的路径传输,这时就需要在IPv4网络中为IPv6创建一条隧道,来提供IPv6在IPv4中的传递,这样的隧道,就是把IPv6的数据全部封装在IPv4中,将IPv4当作链路层来传递的隧道形式,称为覆盖型隧道(Overlay Tunnels )。由于隧道是建立在IPv4基础上的,隧道又必须有起点和终点来明确隧道的路径,所以覆盖型隧道的起点和终点最好是使用IPv4地址,有时必须是IPv4地址,并且隧道在传输IPv6数据时,也应该在隧道的两端添加IPv6地址,来完成两端IPv6网络的通信。隧道的起点和终点必须同时支持IPv4和IPv6。
 当前在IOS中支持的覆盖型隧道共有以下几中:
 Manual
 点对点,只传递IPv6数据包。
 模式为:ipv6ip 
 Generic routing encapsulation (GRE)
 点对点,可以传递多种协议。
 模式为:gre ip
 IPv4-compatible
 点到多点的,思科不建议使用。
 模式为:ipv6ip auto-tunnel 
 6to4
 点到多点的,使用地址为2002::/16。
 模式为:ipv6ip 6to4 
 Intra-Site Automatic Tunnel Addressing Protocol (ISATAP)
 是点到多点的。
 模式为:ipv6ip isatap
以上隧道中,所有隧道的源均为IPv4地址,但是只有点对点隧道的终点为IPv4地址,其它都不需要。更多的是,点对点隧道必须要有IPv6地址,点对点隧道如下图:
注:CCIE考试中,IPv6隧道的考点为Manual 类型的隧道。
 配置IPv6隧道:
 说明:原来R1上的IPv6网络无法与R2上的IPv6网络通信,通过配置IPv6隧道之后,在隧道与相应IPv6接口上启用IPv6路由协议,如OSPFv3,使得两端IPv6网络可以通信。
 1.初始配置
 (1)R1初始配置:
 r1(config)#int f0/0
 r1(config-if)#ip address 10.1.1.1 255.255.255.0
 r1(config-if)#exi
 r1(config)#ip route 0.0.0.0 0.0.0.0 f0/0
 r1(config)#
 r1(config)#ipv6 unicast-routing
 r1(config)#int loopback 0
 r1(config-if)#ipv6 address 2011:1:1:11::1/64
 (2)R2初始配置:
 r2(config)#int f0/1
 r2(config-if)#ip add 20.1.1.1 255.255.255.0
 r2(config-if)#exit
r2(config)#ip route 0.0.0.0 0.0.0.0 f0/0
 r2(config)#ipv6 unicast-routing
 r2(config)#int loopback 0
 r2(config-if)#ipv6 address 2022:2:2:22::2/64
 测试IPv4连通性:
 r1#ping 20.1.1.1
 Type escape sequence to abort.
 Sending 5, 100-byte ICMP Echos to 20.1.1.1, timeout is 2 seconds:
 !!!!!
 Success rate is 100 percent (5/5), round-trip min/avg/max = 64/108/196 ms
 r1#
 说明:R1与R2之间的IPv4连通性正常。
 2.配置Manual 类型的IPv6隧道
 (1)在R1上配置IPv6隧道
 说明:配置的IPv6隧道的类型为Manual 类型,即模式为ipv6ip
 r1(config)#int tunnel 0
 r1(config-if)#ipv6 address 2012:1:1:11::1/64
 r1(config-if)#tunnel source f0/0
 r1(config-if)#tunnel destination 20.1.1.1
 r1(config-if)#tunnel mode ipv6ip
 (2)在R2上配置IPv6隧道
 r2(config)#int tunnel 0
 r2(config-if)#ipv6 address 2012:1:1:11::2/64
 r2(config-if)#tunnel source f0/0
 r2(config-if)#tunnel destination 10.1.1.1
 r2(config-if)#tunnel mode ipv6ip
 (3)查看两端隧道情况
 r1#sh ipv6 interface brief tunnel 0
 Tunnel0                    [up/up]
     FE80::A01:101
     2012:1:1:11::1
 r1#
 r2#show ipv6 interface brief tunnel 0
 Tunnel0                    [up/up]
     FE80::1401:101
     2012:1:1:11::2
 r2#
 (4)测试隧道连通性:
 r1#ping 2012:1:1:11::2
 Type escape sequence to abort.
 Sending 5, 100-byte ICMP Echos to 2012:1:1:11::2, timeout is 2 seconds:
 !!!!!
 Success rate is 100 percent (5/5), round-trip min/avg/max = 212/279/332 ms
 r1#
 说明:隧道通信正常。
 3.配置IPv6路由协议
 说明:在路由器之间启用IPv6路由协议,在隧道之上传递两端IPv6网络信息。
 (1)在R1上配置OSPFv3
 r1(config)#ipv6 router ospf 2
 r1(config-rtr)#router-id 1.1.1.1
 r1(config)#int loopback 0
 r1(config-if)#ipv6 ospf network point-to-point
 r1(config-if)#ipv6 ospf 2 area 0
 r1(config)#int tunnel 0
 r1(config-if)#ipv6 ospf 2 area 0
 (2)在R2上配置OSPFv3
 r2(config)#ipv6 router ospf 2
 r2(config-rtr)#router-id 2.2.2.2
 r2(config)#int loopback 0
 r2(config-if)#ipv6 ospf network point-to-point
 r2(config-if)#ipv6 ospf 2 area 0
 r2(config)#int tunnel 0
 r2(config-if)#ipv6 ospf 2 area 0
 4.查看结果
 (1)查看邻居状态
 R1:
 r1#show ipv6 ospf neighbor 
 Neighbor ID     Pri   State           Dead Time   Interface ID    Interface
 2.2.2.2           1   FULL/  –        00:00:31    14              Tunnel0
 r1#
 R2:
 r2#show ipv6 ospf neighbor 
 Neighbor ID     Pri   State           Dead Time   Interface ID    Interface
 1.1.1.1           1   FULL/  –        00:00:38    14              Tunnel0
 r2
 说明:两端OSPFv3邻居正常。
 (2)查看路由信息
 R1:
 r1#show ipv6 route ospf
 IPv6 Routing Table – 7 entries
 Codes: C – Connected, L – Local, S – Static, R – RIP, B – BGP
        U – Per-user Static route
        I1 – ISIS L1, I2 – ISIS L2, IA – ISIS interarea, IS – ISIS summary
        O – OSPF intra, OI – OSPF inter, OE1 – OSPF ext 1, OE2 – OSPF ext 2
        ON1 – OSPF NSSA ext 1, ON2 – OSPF NSSA ext 2
        D – EIGRP, EX – EIGRP external
 O   2022:2:2:22::/64 [110/11112]
      via FE80::1401:101, Tunnel0
 r1#
 R2:
 r2#show ipv6 route ospf
 IPv6 Routing Table – 7 entries
 Codes: C – Connected, L – Local, S – Static, R – RIP, B – BGP
        U – Per-user Static route
        I1 – ISIS L1, I2 – ISIS L2, IA – ISIS interarea, IS – ISIS summary
        O – OSPF intra, OI – OSPF inter, OE1 – OSPF ext 1, OE2 – OSPF ext 2
        ON1 – OSPF NSSA ext 1, ON2 – OSPF NSSA ext 2
        D – EIGRP, EX – EIGRP external
 O   2011:1:1:11::/64 [110/11112]
      via FE80::A01:101, Tunnel0
 r2#
 说明:两端通过OSPFv3学习到的IPv6路由正常。
 5.测试两端IPv6网络通信情况
 (1)测试R1到R2端IPv6网络的通信情况
 r1#ping 2022:2:2:22::2
 Type escape sequence to abort.
 Sending 5, 100-byte ICMP Echos to 2022:2:2:22::2, timeout is 2 seconds:
 !!!!!
 Success rate is 100 percent (5/5), round-trip min/avg/max = 120/181/268 ms
 r1#
 说明:由于隧道成功建立,并且通过OSPFv3正常学习到路由,到对端IPv6网络通信正常。
 (2)测试R2到R1端IPv6网络的通信情况
 r2#ping 2011:1:1:11::1
 Type escape sequence to abort.
 Sending 5, 100-byte ICMP Echos to 2011:1:1:11::1, timeout is 2 seconds:
 !!!!!
 Success rate is 100 percent (5/5), round-trip min/avg/max = 88/164/284 ms
 r2#
 说明:由于隧道成功建立,并且通过OSPFv3正常学习到路由,到对端IPv6网络通信正常。
 隧道借用地址
 说明:在现有IPv4网络上创建覆盖型IPv6隧道,隧道的起点和终点都使用了IPv4地址来定义,然后要使隧道运行正常,使隧道具有路由协议的连接功能,需要赋予隧道两端IPv6地址,从而提供IPv6的连通性,而隧道两端的IPv6地址可以不属于同一网段,当然属于同一网段是最好的选择。无论隧道两端的IPv6地址是否属于同一网段,IPv6路由协议都是可以正常使用的。如果隧道两端的IPv6地址属于同一网段,那么一切正常,隧道两端的地址可以相互ping通,路由协议也无须更多操作,而当隧道两端的IPv6地址不属于同一网段时,那么两端的地址是无法ping通的,但IPv6路由协议可以照常使用,这时,路由协议需要将隧道的地址当作额外路由进行重新通告一次。
        下面在创建隧道时,将隧道两端的IPv6地址改为无编号借用地址(unnumbered),这时两端地址不属于同网段,再使用IPv6路由协议连通两端IPv6网络。
 1.初始配置
 r1:
 r1(config)#int f0/0
 r1(config-if)#ip address 10.1.1.1 255.255.255.0
 r1(config-if)#exi
 r1(config)#ip route 0.0.0.0 0.0.0.0 f0/0
 r1(config)#
 r1(config)#ipv6 unicast-routing
 r1(config)#int loopback 0
 r1(config-if)#ipv6 address 2011:1:1:11::1/64
 R2
 r2(config)#int f0/1
 r2(config-if)#ip add 20.1.1.1 255.255.255.0
 r2(config-if)#exit
r2(config)#ip route 0.0.0.0 0.0.0.0 f0/0
 r2(config)#ipv6 unicast-routing
 r2(config)#int loopback 0
 r2(config-if)#ipv6 address 2022:2:2:22::2/64
 测试IPv4连通性:
 r1#ping 20.1.1.1
 Type escape sequence to abort.
 Sending 5, 100-byte ICMP Echos to 20.1.1.1, timeout is 2 seconds:
 !!!!!
 Success rate is 100 percent (5/5), round-trip min/avg/max = 64/108/196 ms
 r1#
 说明:R1与R2之间的IPv4连通性正常。
 2.配置unnumbered地址的IPv6隧道
 (1)在R1上配置IPv6隧道
 r1(config)#int tunnel 0
 r1(config-if)#ipv6 unnumbered loopback 0
 r1(config-if)#tunnel source f0/0
 r1(config-if)#tunnel destination 20.1.1.1
 r1(config-if)#tunnel mode ipv6ip
 (2)在R2上配置IPv6隧道
 r2(config)#int tunnel 0
 r2(config-if)#ipv6 unnumbered loopback 0
 r2(config-if)#tunnel source f0/0
 r2(config-if)#tunnel destination 10.1.1.1
 r2(config-if)#tunnel mode ipv6ip
 (3)查看两端隧道情况
 r1#show ipv6 interface brief tunnel 0
 Tunnel10                   [up/up]
     FE80::A01:101
     unnumbered (Loopback0)
 r1#
 r2#show ipv6 interface brief tunnel 0
 Tunnel10                   [up/up]
     FE80::1401:101
     unnumbered (Loopback0)
 r2#
 (4)测试隧道连通性:
 r1#ping 2022:2:2:22::2
 Type escape sequence to abort.
 Sending 5, 100-byte ICMP Echos to 2022:2:2:22::2, timeout is 2 seconds:
 …..
 Success rate is 0 percent (0/5)
 r1#
 说明:由于隧道两端地址不属于同一网段,所以没有对端路由信息,无法ping通。
 3.配置IPv6路由协议
 (1)在R1上配置OSPFv3
 r1(config)#ipv6 router ospf 10
 r1(config-rtr)#router-id 1.1.1.1
 r1(config)#int loopback 0
 r1(config-if)#ipv6 ospf network point-to-point
 r1(config-if)#ipv6 ospf 10 area 0
 r1(config)#int tunnel 0
 r1(config-if)#ipv6 ospf 10 area 0
 (2)在R2上配置OSPFv3
 r2(config)#ipv6 router ospf 10
 r2(config-rtr)#router-id 2.2.2.2
 r2(config)#int loopback 0
 r2(config-if)#ipv6 ospf network point-to-p
 r2(config-if)#ipv6 ospf 10 area 0
 r2(config)#int tunnel 10
 r2(config-if)#ipv6 ospf 10 area 0
 4.查看结果
 (1)查看邻居状态
 r1#show ipv6 ospf neighbor 
 Neighbor ID     Pri   State           Dead Time   Interface ID    Interface
 2.2.2.2           1   FULL/  –        00:00:37    15              Tunnel10
 r1#
r2#show ipv6 ospf neighbor
 Neighbor ID     Pri   State           Dead Time   Interface ID    Interface
 1.1.1.1           1   FULL/  –        00:00:36    15              Tunnel10
 r2#
 说明:两端OSPFv3邻居正常。
 (2)查看路由信息
 R1:
 r1#show ipv6 route ospf
 IPv6 Routing Table – 7 entries
 Codes: C – Connected, L – Local, S – Static, R – RIP, B – BGP
        U – Per-user Static route
        I1 – ISIS L1, I2 – ISIS L2, IA – ISIS interarea, IS – ISIS summary
        O – OSPF intra, OI – OSPF inter, OE1 – OSPF ext 1, OE2 – OSPF ext 2
        ON1 – OSPF NSSA ext 1, ON2 – OSPF NSSA ext 2
        D – EIGRP, EX – EIGRP external
 O   2022:2:2:22::/64 [110/11112]
      via FE80::1401:101, Tunnel10
 r1#
 R2:
 r2#show ipv6 route ospf
 IPv6 Routing Table – 7 entries
 Codes: C – Connected, L – Local, S – Static, R – RIP, B – BGP
        U – Per-user Static route
        I1 – ISIS L1, I2 – ISIS L2, IA – ISIS interarea, IS – ISIS summary
        O – OSPF intra, OI – OSPF inter, OE1 – OSPF ext 1, OE2 – OSPF ext 2
        ON1 – OSPF NSSA ext 1, ON2 – OSPF NSSA ext 2
        D – EIGRP, EX – EIGRP external
 O   2011:1:1:11::/64 [110/11112]
      via FE80::A01:101, Tunnel10
 r2#
 说明:两端通过OSPFv3学习到的IPv6路由正常。
 5.测试两端IPv6网络通信情况
 r1#ping 2022:2:2:22::2
 Type escape sequence to abort.
 Sending 5, 100-byte ICMP Echos to 2022:2:2:22::2, timeout is 2 seconds:
 !!!!!
 Success rate is 100 percent (5/5), round-trip min/avg/max = 120/181/268 ms
 r1#
 说明:由于隧道成功建立,并且通过OSPFv3正常学习到路由,到对端IPv6网络通信正常。
 (2)测试R2到R1端IPv6网络的通信情况
 r2#ping 2011:1:1:11::1
 Type escape sequence to abort.
 Sending 5, 100-byte ICMP Echos to 2011:1:1:11::1, timeout is 2 seconds:
 !!!!!
 Success rate is 100 percent (5/5), round-trip min/avg/max = 88/164/284 ms
 r2#
 说明:由于隧道成功建立,并且通过OSPFv3正常学习到路由,到对端IPv6网络通信正常。
 IPv6组播
 概述
 在理解IPv6组播之前,必须了解IPv4组播,了解IPv4 PIM,了解IGMP,这些知识在本篇不再详细讲述,相关详细内容,请参见IPv4 组播部分。
 要启用IPv6组播,必须先开IPv6单播。
 IPv6组播地址:
 IPv6组播地址的范围是FF00::/8 (1111 1111)。
 因为一个正常的IPv6地址包含128位,在IPv6组播地址中,第一段共16位的格式被拆分成三部分:第一部分共8位,全部为1,即使用FF来表示。第二部分共4位,表示组播地址的存活期,如果为0表示永久,如果为1表示临时。第三部分共4位,表示组播地址的范围,分为node, link, site, organization,global分别表示为1, 2, 5, 8,E,除了此五种以外,0和F为保留范围,而其它全部称为未分配,建议使用未分配的地址范围。组播地址的表示格式如下图:
 在IPv6中没有广播地址,只有组播,所以使用组播代替广播。
 无论是路由器还是主机,所有IPv6接口默认加入FF02::1 ,
 而所有路由器的IPv6接口默认加入FF02::2。
 MLD (Multicast Listener Discovery)
 在IPv6组播中,MLD协议与IPv4组播中的IGMP协议功能相同,是用于发现接收者的协议。
 路由器发送MLD查询消息来确认接收者,而主机发送MLD报告来加入一个组,主机可以在同一时间属于多个组。
 MLD共有两个版本,ver1和ver2,
 MLD ver 1是基于IPv4 IGMP v2
 MLD ver 2是基于IPv4 IGMP v3
 IOS同时使用两个。
 PIM
 IPv6 PIM的功能同IPv4 PIM,而IPv6 PIM只使用SM(稀疏)模式,所以网络中必须存在RP,而RP的位置可以通过静态配置和BSR通告两种方法确认。
     在配置IPv6 PIM时,当开启IPv6组播功能后,所有正常启用IPv6功能的接口自动开启IPv6 PIM,所以IPv6 PIM无须手工配置;并且须明白DR在组播中的作用,详细内容请参见IPv4组播部分。
配置IPv6组播
 1.初始配置
 (1)R1初始配置:
 r1(config)#ipv6 unicast-routing
 r1(config)#ipv6 router ospf 10
 r1(config-rtr)#router-id 1.1.1.1
 r1(config)#int f0/0
 r1(config-if)#ipv6 address 2012:1:1:11::1/64
 r1(config-if)#ipv6 ospf 10 area 0
 r1(config)#int loopback 0
 r1(config-if)#ipv6 address 2011:1:1:11::1/64
 r1(config-if)#ipv6 ospf network point-to-point
 r1(config-if)#ipv6 ospf 10 area 0
 (2)R2初始配置:
 r2(config)#ipv6 unicast-routing
 r2(config)#ipv6 router ospf 10
 r2(config-rtr)#router-id 2.2.2.2
 r2(config)#interface f0/0
 r2(config-if)#ipv6 address 2012:1:1:11::2/64
 r2(config-if)#ipv6 ospf 10 area 0
 r2(config)#int loopback 0
 r2(config-if)#ipv6 address 2022:2:2:22::2/64
 r2(config-if)#ipv6 ospf network point-to-point
 r2(config-if)#ipv6 ospf 10 area 0
 r2(config)#int s0/0
 r2(config-if)#encapsulation frame-relay
 r2(config-if)#no frame-relay inverse-arp
 r2(config-if)#no arp frame-relay
 r2(config-if)#ipv6 address 2023:1:1:11::2/64
 r2(config-if)#frame-relay map ipv6 2023:1:1:11::3 203 broadcast
 r2(config-if)#frame-relay map ipv6 FE80::213:1AFF:FE2F:380 203 broadcast
 r2(config-if)#ipv6 ospf network point-to-point
 r2(config-if)#ipv6 ospf 10 area 0
 (3)R3初始配置:
 r3(config)#ipv6 unicast-routing
 r3(config)#ipv6 router ospf 10
 r3(config-rtr)#router-id 3.3.3.3
 r3(config)#interface loopback 0
 r3(config-if)#ipv6 address 2033:3:3:33::3/64
 r3(config-if)#ipv6 ospf network point-to-point
 r3(config-if)#ipv6 ospf 10 area 0
 r3(config)#int s0/0
 r3(config-if)#encapsulation frame-relay
 r3(config-if)#no frame-relay inverse-arp
 r3(config-if)#no arp frame-relay
 r3(config-if)#ipv6 address 2023:1:1:11::3/64
 r3(config-if)#frame-relay map ipv6 2023:1:1:11::2 302 broadcast
 r3(config-if)#frame-relay map ipv6 FE80::213:1AFF:FE2F:1200 302 broadcast
 r3(config-if)#ipv6 ospf network point-to-point
 r3(config-if)#ipv6 ospf 10 area 0
 2.开启IPv6组播
 (1)在R1上开启IPv6组播
 r1(config)#ipv6 multicast-routing
 (2)在R2上开启IPv6组播
 r2(config)#ipv6 multicast-routing
 (3)在R3上开启IPv6组播
 r3(config)#ipv6 multicast-routing
 3.配置IPv6 PIM
 说明:在配置IPv6 PIM时,当开启IPv6组播功能后,所有正常启用IPv6功能的接口自动开启IPv6 PIM,所以IPv6 PIM无须手工配置。
 (1)查看R1上的PIM状态
 r1#show ipv6 pim neighbor
 Neighbor Address           Interface          Uptime    Expires DR pri Bidir
FE80::213:1AFF:FE2F:1200 FastEthernet0/0 00:00:43 00:01:31 1 (DR) B
 r1#
 说明:由于IPv6单播和IPv6组播已正常开启,所以IPv6 PIM邻居也已经正常建立。
 (2)查看R2上的PIM状态
 r2#show ipv6 pim neighbor
 Neighbor Address           Interface          Uptime    Expires DR pri Bidir
 FE80::212:D9FF:FEF9:C8A0   FastEthernet0/0    00:00:56  00:01:18 1      B
 FE80::213:1AFF:FE2F:380    Serial0/0          00:00:55  00:01:28 10 (DR) B
 r2#
 说明:由于IPv6单播和IPv6组播已正常开启,所以IPv6 PIM邻居也已经正常建立。
 (3)查看R3上的PIM状态
 r3#show ipv6 pim neighbor
 Neighbor Address           Interface          Uptime    Expires DR pri Bidir
FE80::213:1AFF:FE2F:1200 Serial0/0 00:01:09 00:01:37 1 B
 r3#
 说明:由于IPv6单播和IPv6组播已正常开启,所以IPv6 PIM邻居也已经正常建立。
 4.配置MLD
 说明:因为MLD的功能同IGMP,所以配置的目的为加入某个组。
 (1)在R1上配置加入组ff04::1
 说明:建议使用未分配的组播地址范围。
 r1(config)#interface loopback 0
 r1(config-if)#ipv6 mld join-group ff04::1   
 5.配置静态RP
 说明:静态配置所有设备的RP为R1的loopback 0
 (1)在R1上配置静态RP
 r1(config)#ipv6 pim rp-address 2011:1:1:11::1
 (2)在R2上配置静态RP
 r2(config)#ipv6 pim rp-address 2011:1:1:11::1
 (3)在R3上配置静态RP
 r3(config)#ipv6 pim rp-address 2011:1:1:11::1
 6.查看结果
 (1)查看R1上的RP情况
 r1#show ipv6 pim group-map ff04::
 FF00::/8*
     SM, RP: 2011:1:1:11::1
     RPF: Tu2,2011:1:1:11::1 (us)
     Info source: Static
     Uptime: 00:01:15, Groups: 1
 r1#
 说明:由于已手工配置RP,所以RP正常。
 (2)查看R2上的RP情况
 r2#show ipv6 pim group-map ff04::
 FF00::/8*
     SM, RP: 2011:1:1:11::1
     RPF: Fa0/0,FE80::212:D9FF:FEF9:C8A0
     Info source: Static
     Uptime: 00:01:40, Groups: 0
 r2#
 说明:由于已手工配置RP,所以RP正常。
 (3)查看R3上的RP情况
 r3#show ipv6 pim group-map ff04::
 FF00::/8*
     SM, RP: 2011:1:1:11::1
     RPF: Se0/0,FE80::213:1AFF:FE2F:1200
     Info source: Static
     Uptime: 00:01:41, Groups: 0
 r3
 说明:由于已手工配置RP,所以RP正常。
 7.测试组播通信情况
 (1)测试R1的组播通信情况
 r1#ping ff04::1   
 Output Interface: Loopback0
 Type escape sequence to abort.
 Sending 5, 100-byte ICMP Echos to FF04::1, timeout is 2 seconds:
 Packet sent with a source address of 2011:1:1:11::1
 Reply to request 0 received from 2011:1:1:11::1, 16 ms
 Reply to request 1 received from 2011:1:1:11::1, 0 ms
 Reply to request 2 received from 2011:1:1:11::1, 0 ms
 Reply to request 3 received from 2011:1:1:11::1, 0 ms
 Reply to request 4 received from 2011:1:1:11::1, 0 ms
 Success rate is 100 percent (5/5), round-trip min/avg/max = 0/3/16 ms
 5 multicast replies and 0 errors.
 r1#
 说明:在测试组播时,出口必须全部写出。从结果中可以看出,由于PIM已成功建立,RP已正确学到,所以组播通信正常。
 (2)测试R2的组播通信情况
 r2#ping ff04::1
 Output Interface: FastEthernet0/0
 Type escape sequence to abort.
 Sending 5, 100-byte ICMP Echos to FF04::1, timeout is 2 seconds:
 Packet sent with a source address of 2012:1:1:11::2
 Reply to request 0 received from 2011:1:1:11::1, 4 ms
 Reply to request 1 received from 2011:1:1:11::1, 0 ms
 Reply to request 2 received from 2011:1:1:11::1, 0 ms
 Reply to request 3 received from 2011:1:1:11::1, 0 ms
 Reply to request 4 received from 2011:1:1:11::1, 0 ms
 Success rate is 100 percent (5/5), round-trip min/avg/max = 0/0/4 ms
 5 multicast replies and 0 errors.
 r2#
 说明:从结果中可以看出,由于PIM已成功建立,RP已正确学到,所以组播通信正常。
 (3)测试R3的组播通信情况
 r3#ping ff04::1
 Output Interface: Serial0/0
 Type escape sequence to abort.
 Sending 5, 100-byte ICMP Echos to FF04::1, timeout is 2 seconds:
 Packet sent with a source address of 2023:1:1:11::3
 Request 0 timed out
 Request 1 timed out
 Request 2 timed out
 Request 3 timed out
 Request 4 timed out
 Success rate is 0 percent (0/5)
 0 multicast replies and 0 errors.
 r3#
 说明:R3的组播无法ping通,由于PIM的DR选举问题。原因请参见IPv4组播部分。
 8.解决组播通信问题
 说明:由于R3与R2之间为多路访问,DR位置错误,所以组播无法通信,切换DR位置以解决组播通信问题。
 (1)改R2为网络中的DR
 r2(config)#interface s0/0
 r2(config-if)#ipv6 pim dr-priority 100
 (2)查看当前网络中DR情况
 r3#show ipv6 pim neighbor
 Neighbor Address           Interface          Uptime    Expires DR pri Bidir
FE80::213:1AFF:FE2F:1200 Serial0/0 00:10:02 00:01:24 100 (DR) B
 r3#
 说明:DR已成功变为R2。
 (3)测试R3的组播通信情况
 r3#ping ff04::1
 Output Interface: Serial0/0   
 Type escape sequence to abort.
 Sending 5, 100-byte ICMP Echos to FF04::1, timeout is 2 seconds:
 Packet sent with a source address of 2023:1:1:11::3
 Reply to request 0 received from 2011:1:1:11::1, 68 ms
 Reply to request 0 received from 2011:1:1:11::1, 80 ms
 Reply to request 1 received from 2011:1:1:11::1, 64 ms
 Reply to request 1 received from 2011:1:1:11::1, 76 ms
 Reply to request 2 received from 2011:1:1:11::1, 65 ms
 Reply to request 2 received from 2011:1:1:11::1, 77 ms
 Reply to request 3 received from 2011:1:1:11::1, 68 ms
 Reply to request 3 received from 2011:1:1:11::1, 80 ms
 Reply to request 4 received from 2011:1:1:11::1, 124 ms
 Reply to request 4 received from 2011:1:1:11::1, 168 ms
 Success rate is 100 percent (5/5), round-trip min/avg/max = 64/87/168 ms
 10 multicast replies and 0 errors.
 r3#
 说明:修改DR后,R3的组播通信正常。
   
 配置BSR
 说明:前面通过手工静态配置RP来使组播正常通信,下面通过配置BSR来自动选举RP。
 配置R1的loopback0为C-BSR和C-RP。
 1.配置C-BSR
 (1)配置R1的loopback0为C-BSR
 r1(config)#ipv6 pim bsr candidate bsr 2011:1:1:11::1
 2.配置C-RP
 (1)配置R1的loopback0为C-RP
 r1(config)#ipv6 pim bsr candidate rp 2011:1:1:11::1
 3.查看结果
 (1)查看R1上的RP情况
 r1#show ipv6 pim group-map ff04::
 FF00::/8*
     SM, RP: 2011:1:1:11::1
     RPF: Tu2,2011:1:1:11::1 (us)
     Info source: BSR From: 2011:1:1:11::1(00:01:31), Priority: 192
     Uptime: 00:00:58, Groups: 1
 r1#
 说明:由于BSR配置正确,所以RP正常。
 (2)查看R2上的RP情况
 r2#show ipv6 pim group-map ff04::
 FF00::/8*
     SM, RP: 2011:1:1:11::1
     RPF: Fa0/0,FE80::212:D9FF:FEF9:C8A0
     Info source: BSR From: 2011:1:1:11::1(00:02:20), Priority: 192
     Uptime: 00:01:09, Groups: 1
 r2#
 说明:由于BSR配置正确,所以RP正常。
 (3)查看R3上的RP情况
 r3#show ipv6 pim group-map ff04::
 FF00::/8*
     SM, RP: 2011:1:1:11::1
     RPF: Se0/0,FE80::213:1AFF:FE2F:1200
     Info source: BSR From: 2011:1:1:11::1(00:02:09), Priority: 192
     Uptime: 00:01:20, Groups: 0
 r3#
 说明:由于BSR配置正确,所以RP正常。
 4.测试组播通信情况
 (1)测试R1的组播通信情况
 r1#ping ff04::1                  
 Output Interface: Loopback0                     
 Type escape sequence to abort.
 Sending 5, 100-byte ICMP Echos to FF04::1, timeout is 2 seconds:
 Packet sent with a source address of 2011:1:1:11::1
 Reply to request 0 received from 2011:1:1:11::1, 8 ms
 Reply to request 1 received from 2011:1:1:11::1, 0 ms
 Reply to request 2 received from 2011:1:1:11::1, 0 ms
 Reply to request 3 received from 2011:1:1:11::1, 0 ms
 Reply to request 4 received from 2011:1:1:11::1, 0 ms
 Success rate is 100 percent (5/5), round-trip min/avg/max = 0/1/8 ms
 5 multicast replies and 0 errors.
 r1#
 说明: RP已正确学到,所以组播通信正常。
 (2)测试R2的组播通信情况
 r2#ping ff04::1                  
 Output Interface: FastEthernet0/0               
 Type escape sequence to abort.
 Sending 5, 100-byte ICMP Echos to FF04::1, timeout is 2 seconds:
 Packet sent with a source address of 2012:1:1:11::2
 Reply to request 0 received from 2011:1:1:11::1, 12 ms
 Reply to request 1 received from 2011:1:1:11::1, 0 ms
 Reply to request 2 received from 2011:1:1:11::1, 8 ms
 Reply to request 3 received from 2011:1:1:11::1, 0 ms
 Reply to request 4 received from 2011:1:1:11::1, 0 ms
 Success rate is 100 percent (5/5), round-trip min/avg/max = 0/4/12 ms
 5 multicast replies and 0 errors.
 r2#
 说明: RP已正确学到,所以组播通信正常。
 (3)测试R3的组播通信情况
 r3#ping ff04::1                  
 Output Interface: Serial0/0                     
 Type escape sequence to abort.
 Sending 5, 100-byte ICMP Echos to FF04::1, timeout is 2 seconds:
 Packet sent with a source address of 2023:1:1:11::3
 Reply to request 0 received from 2011:1:1:11::1, 120 ms
 Reply to request 0 received from 2011:1:1:11::1, 132 ms
 Reply to request 1 received from 2011:1:1:11::1, 100 ms
 Reply to request 1 received from 2011:1:1:11::1, 116 ms
 Reply to request 1 received from 2011:1:1:11::1, 128 ms
 Reply to request 2 received from 2011:1:1:11::1, 100 ms
 Reply to request 2 received from 2011:1:1:11::1, 116 ms
 Reply to request 3 received from 2011:1:1:11::1, 100 ms
 Reply to request 3 received from 2011:1:1:11::1, 116 ms
 Reply to request 4 received from 2011:1:1:11::1, 101 ms
 Reply to request 4 received from 2011:1:1:11::1, 117 ms
 Success rate is 100 percent (5/5), round-trip min/avg/max = 100/113/132 ms
 11 multicast replies and 0 errors.
 r3#
 说明: RP已正确学到,所以组播通信正常。
 IPv6 邻居发现协议(ND协议)
     由于IPv6 ND协议中,几乎所有有用功能均为自动开启,无须手工干预,所以在此不再详细解释ND协议的运行过程,详细内容请自行参考Cisco文档中IOS 12.4 T部分。
原创文章,作者:huangyanzhao05,如若转载,请注明出处:https://www.ipv6s.com/basis/20101002159.html
                
                                                            微信扫一扫                                                    
                                                            支付宝扫一扫